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to several well-known games and we show that in many cases we were able to improve previous results. 

© 2019 Elsevier B.V. All rights reserved. 

1

 

{  

i  

f  

o  

s

d  

t  

a  

w  

b

 

t  

b  

n

 

t  

m  

i  

f

α  

w  

a  

B

f  

v  

p  

a  

v  

f  

S  

n

 

 

 

 

 

 

 

 

 

h

0

. Introduction 

Let (N, v ) be a cooperative game with set of players N =
 1 , . . . , n } and characteristic function v with v (∅ ) = 0 . For simplic-

ty throughout this paper we will assume that the characteristic

unction v takes values in the set of real numbers. The extension

f our results to the case of vectorial characteristic functions is

traightforward, see Puerto, Fernández, and Hinojosa (2008) . Let G 

N 

enote the class of N -person cooperative games. The main goal of

his class of games is to allocate the grand coalition payoff v (N)

mong the players in the game. There exist many allocation rules

ith a number of different properties and any of these rules may

e considered as a solution concept of the game. 

A well-accepted solution concept in cooperative game theory is

he concept of value. A value α : G 

N → R 

n is a n -tuple of real num-

ers (one per agent in the grand coalition) where the i th compo-

ent is the amount allocated to agent i in the game (N, v ) . 
These values are determined by the properties required to

hem. Linearity is a desirable property that has been required to

ost of the values considered in the literature. Thus, we will be

nterested in studying values whose functional form fits into the

ollowing formula: 

( v ∗) = 

∑ 

S∈U 
a (S) ◦ v ∗(S) , (1)

here ◦ is the Hadamard product of vectors, a (S) = (a 1 (S) , . . . ,

 n (S)) t , S ∈ U are real n -vectors depending only on S , U = 2 N the
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amily of all the coalitions of the game and v ∗ = (v ∗(S)) t 
S∈U , where

 ∗(S) := (v 1 , ∗(S, v ) , . . . , v n, ∗(S, v )) t are n -vectors of real values de-

ending on S , the characteristic function of the game and eventu-

lly on each player in the game. There are many examples of these

alues although the best known may be the Shapley value, the

amily of Semivalues ( Dubey, Neyman, & Weber, 1981 ), the Least

quares values ( Ruiz, Valenciano, & Zarzuelo, 1998 ) and the Multi-

omial values ( Carreras & Puente, 2015; 2018 ). 

• The Shapley value of the i th player, for the cooperative game

(N, v ) , is defined as 

φi (v ) = 

∑ 

S⊆N\{ i } 

s ! (n − s − 1)! 

n ! 
(v (S ∪ { i } ) − v (S)) , (2)

where | S| = s denotes the cardinal of the set S . The Shapley

value corresponds to the form given in (1) with a i ( S ) equal to
s !(n −s −1)! 

n ! , if i 	∈ S and zero otherwise; and v i, ∗(S) := v (S ∪ { i } ) −
v (S) . 

• The Semivalues, introduced by Dubey et al. (1981) , are simi-

lar to the Shapley values but with different systems of coeffi-

cients: 

ψ i (v ) = 

∑ 

S⊆N\{ i } 
p s (v (S ∪ { i } ) − v (S)) , 

with p s ≥ 0, s = 0 , . . . , n − 1 , real numbers such that∑ n −1 
s =0 

(
n −1 

s 

)
p s = 1 . The Semivalue ψ corresponds to

(1) with a (S) = p s , for S ⊂ N �{ i }; a (S) = 0 otherwise, and

v i, ∗(S) := v (S ∪ { i } ) − v (S) . Clearly the Shapley value is also a

Semivalue. 
• The family of Least Squares values introduced by Dragan

(2006) and Ruiz et al. (1998) also fits to this framework (1) .

https://doi.org/10.1016/j.ejor.2019.05.027
https://www.ScienceDirect.com
https://www.elsevier.com/locate/ejor
https://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2019.05.027&domain=pdf
mailto:stefano.benati@unitn.it
mailto:lopez@us.es
mailto:puerto@us.es
https://doi.org/10.1016/j.ejor.2019.05.027
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The Least Squares value for player i is defined as: 

x i (v ) = 

v (N) 

n 

+ 

1 

nκ
(na m 

i (v ) −
∑ 

j 

a m 

j (v )) (3)

where a m 

i 
(v ) = 

∑ 

i ∈ S⊂N m (s ) v (S) , | S| = s and κ = 

∑ n −1
s =1 

m (s ) 
(

n −2 
s −1 

)
. The reader is referred to (15) to check that x i (v ) can

expressed in the form (1) . 
• The mean value of the characteristic function of all coalitions

containing player i , 

αi ( v ) = 

1 

2 

n −1 

∑ 

S: i ∈ S⊂U 

v (S) (4)

is clearly one more example of a value of the form given in (1) .

In general, computing any value α( v ∗ ) of a cooperative game is

# P -hard, since the number of evaluations needed to obtain it re-

quires the evaluation of some expression for all the coalitions S ⊆N

which is of the order O (2 n ). This issue becomes an unavoidable ob-

stacle whenever the number of players is medium to large ( n > 30).

Examples of cooperative games with a large number of players can

be found for instance in: Voting rules in the International Mone-

tary Fund, microarrays ( Moretti, 2010 ), neuroscience ( Keinan, Sand-

bank, Hilgetag, Meilijson, & Ruppin, 2006 ), complex games as the

ones defined in networks ( van Campen, Hamers, Husslage, & Lin-

delauf, 2018 ), linear production games and parliaments. To avoid

the difficulties of the large number of evaluations several authors

have proposed different methodologies. Owen (1995) proposed a

method to compute the Shapley value via a probabilistic approxi-

mation of the game by a normal distribution. A different approach,

using generating functions, only valid for simple games, is given

in Bilbao, Fernández, Jiménez, and López (20 0 0) . Preliminary ap-

proaches to approximate the Shapley values of cooperative games

using sampling can be found in Mann and Shapley (1960) , Fatima,

Wooldridge, and Jenniggs (2006) , Fernández, Mayor, Puerto, and

Zafra (2004) , Fernández and Puerto (2005) , Leech (2003) , and

Matsui and Matsui (20 0 0) . Later, Keinan et al. (20 06) apply sim-

ilar techniques to estimate Shapley values of some neurocontroller

games that appear in neuroscience. In Castro, Gómez, and Tejada

(2009) and Castro, Gómez, Molina, and Tejada (2017) the authors

revisit the above methodology and apply it to some standard co-

operative games. Sampling applied to the Owen value is proposed

in Saavedra-Nieves, García-Jurado, and Fiestras-Janeiro (2018) . 

In this paper we present a new method for approximating val-

ues of cooperative games. Rather than computing the exact val-

ues we concentrate on providing good estimations of these val-

ues with their corresponding measure of errors. To this end, we

use a general stochastic approximation of a cooperative game. On

this approximation, we define a probabilistic value that is seen as

an estimator of the actual value of the original game. This estima-

tor is unbiased, consistent and with controlled quadratic error. Our

method provide a general methodology to calculate any value ex-

pressible as a weighted linear combination (1) , and its estimated

precision depends on sampling strategies, e.g, uniform, stratified,

and so on, used to approximate α( v ∗ ). Our computational experi-

ments show the generality of our approach: In some cases our the-

ory provides new foundations to known empiric procedures, but in

other cases we are able to devise new computational procedures

that outperform previous approaches. 

The paper is organized in six sections. After the introduction,

the second section defines the stochastic approximation of a co-

operative game, and proves its main statistical and distributional

properties. In Section 3 we present our family of estimators and

their properties. In Section 4 we show how different sampling

schemes lead to specialized formulas of estimators and standard

errors. Finally, in Section 5 we test the above mentioned esti-

mators on five different well-known classes of cooperative games
howing the efficiency of the method. The last section, namely

ection 6 contains our conclusions. 

. The stochastic approximation of a cooperative game 

The goal of this section is to define a stochastic approximation

f a game (N, v ) that allows us to estimate its values. The study of

robabilistic or stochastic cooperative games is not new. The reader

s referred to Fernández, Puerto, and Zafra (2002) , Fernández and

uerto (2006) , Granot (1977) , Timmer (2006) , Timmer, Borm, and

ijs (2003) , and Timmer, Borm, and Tijs (2005) for different ap-

roaches and further analysis on this class of games. 

Let U be the family of all the coalitions of the game and let

 

τ be the τ -fold cartesian product of U . Therefore, any element

 ∈ U 

τ , is a vector S = (S 1 , . . . , S τ ) t where each S i ⊆ N . We assume

urther that we are given a probability distribution p on U . Thus,

or any S ∈ U , p ( S ) is the probability of choosing the coalition S . For

implicity, we will assume that p ( S ) > 0, for all S ∈ U , although, as

e will see later, this condition is not essential. This probability, p ,

nduces on the space U 

τ the natural product probability. 

We introduce a set of random vectors ˜ v ∗(S) :=
( ̃  v 1 , ∗(S) , . . . , ̃  v n, ∗(S)) associated with each coalition of the original

ame. For each coalition S and player i ∈ N , let us define the

andom variable ̃  v i, ∗(S) := ̃

 v i, ∗(S; τ, p, S ) as 

 

 i, ∗(S) = 

M S (S ) 

τ p(S) 
v i, ∗(S) (5)

here M S := M S (S ) = # { j : S j ∈ S and S j = S} is the number of

imes that coalition S appears in the random vector of coalitions

 . Note that the random vector M = (M S ) S∈ U follows a multinomial

istribution with parameters τ (number of elements in the sample

 ) and p = (p(S)) S∈U (vector of probabilities of selection for each

ossible set in the sample S ). We denote this fact by M ∼M ( τ ; p ) .

heorem 1. For all S ∈ U and i ∈ N , 

a) E ̃  v i, ∗(S) = v i, ∗(S) . 

b) Var 
(̃

 v i, ∗(S) 
)

= 

1 − p(S) 

τ p(S) 
v 2 i, ∗(S) 

c) Cov ( ̃  v i, ∗(S) , ̃  v i, ∗(T )) = −v i, ∗(S) v i, ∗(T ) 

τ
d) ˜ v i, ∗(S) 

a.s. −→ v i, ∗(S) , as τ −→ ∞ . 

e) Let v i, ∗ = 

(
v i, ∗(S) 

)
S∈U and ̃  v i, ∗ = 

(̃
 v i, ∗(S) 

)
S∈U , then 

√ 

τ
(̃

 v i, ∗ − v i, ∗
)

d −→ Z ∼ N 2 n ( 0 , �) , as τ −→ ∞ , where 

� := diag 

(
v 2 

i, ∗(S) 

p(S) 

)
S∈U 

− v i, ∗v t i, ∗

roof. Recall that M = (M S ) S∈U follows a multinomial distribu-

ion, then for all S ∈ U , M S ∼ B inomial ( τ , p ( S )), so EM S = τ p(S)

nd Var (M S ) = τ p(S) ( 1 − p(S) ) . Also, for S, T ∈ U with T 	 = S ,

ov (M S , M T ) = −τ p(S) p(T ) . 

(a) For all S ⊂ N , 

E ̃  v i, ∗(S) = E 

(
v i, ∗(S) M S 

τ p(S) 

)
= 

v i, ∗(S) 

τ p(S) 
EM S = v i, ∗(S) . 

(b) Using standard properties of the variance, we have 

Var ( ̃  v i, ∗(S) ) = Var 

(
v i, ∗(S) M S 

τ p(S) 

)
= 

(
v i, ∗(S) 

τ p(S) 

)2 

Var ( M S ) 

= 

1 − p(S) 

τ p(S) 
v 2 i, ∗(S) . 
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(c) We have, 

Cov ( ̃  v i, ∗(S) , ̃  v i, ∗(T )) = Cov 

(
v i, ∗(S) M S 

τ p(S) 
, 

v i, ∗(T ) M T 

τ p(T ) 

)
= − v i, ∗(S) v ∗(T ) 

τ 2 p(S) p(T ) 
Cov ( M S , M T ) 

= − v i, ∗(S) v ∗(T ) 

τ
. 

(d) It is straightforward from the fact that M S /τ
a.s. −→ p(S) , as τ ↑

+ ∞ , for all S ∈ U . 

(e) The multinomial vector M is asymptotically normal, i.e.,
√ 

τ
(
M 

τ − p 

) d −→ W , as τ −→ ∞ , with W following a 2 n -

dimensional normal distribution with mean 0 and vari-

ance matrix �, i.e., W ∼ N 2 n ( 0 , �) , with � = diag(p ) − pp 

t .

On the other hand, observe that ̃  v i, ∗ = diag 

(
v i, ∗(S) 

τ p(S) 
, S ∈ U 

)
M ,

then the asymptotic normality of ˜ v i, ∗ follows from the

asymptotic normality of the multinomial vector M and the

limit covariance matrix follows from (b) and (c) . 

�

In the statistical language, we may interpret ̃  v i, ∗(S) as an ‘ esti-

ator ’ of the value v i, ∗(S) based on a sample of size τ . So, property

a) in Theorem 1 , means that the ‘ estimator ’ ̃  v i, ∗(S) is unbiased for

 i, ∗(S) , for any S ∈ U . Properties (b) and (c) allow us to determine

ariances and covariances between these ‘ estimators ’. Properties (d)

nd (e) (consistency and asymptotic normality) show how the ‘ es-

imators ’ behave as the sample size increases: they approach the

true values’. Note that here, we use ‘ estimator ’ rather than esti-

ator, because in the strict statistical sense an estimator must not

epend on the estimated value. Anyway, we believe that this sta-

istical interpretation is interesting as we will see in the following

ections. 

. Estimation of values in a cooperative game 

The main practical difficulty with quantities of the form given

n (1) is that they are not easy to compute due to the fact that

here are too many terms in the sum (usually 2 n −1 or 2 n ). The aim

f this section is to provide approximations to these values based

n the stochastic approximation to the game given in section 2. 

Our approach is based on a sample of size τ , S = (S 1 , . . . , S τ )

elected according to the probability scheme described in the pre-

ious section. The proposed stochastic approximation to α( v ∗ ) is

iven by: 

˜ ( v ∗) := α
(̃

 v ∗
)

= 

∑ 

S∈U 
a (S) ◦˜ v ∗(S) = 

∑ 

S∈U 

a (s ) ◦ v ∗(S) 

τ p(S) 
M S 

= 

( 

1 

τ

∑ 

S∈ S 

a i (S) v i, ∗(S) 

p(S) 

) 

i ∈ N 

, (6) 

here ◦ is the Hadamard product of vectors and the last equality

ses the fact that M S = 0 for all S / ∈ S . The advantage of using this

pproximation is that it involves a much smaller number of terms

n the summation than the true expression of the value. 

Now, we will study some properties of these approximations.

n the sequel for any vector x ∈ R 

n , we denote x 2 = (x 2 
1 
, . . . , x 2 n ) 

t =
 ◦ x, i.e. the Hadamard product of x by itself. 

heorem 2. The approximation ˜ α( v ∗) = ( ̃  αi ( v ∗) ) n i =1 
satisfies: 

(a) E ̃  αi ( v ∗) = αi ( v ∗) , ∀ i ∈ N. 

(b) V ar( ̃  αi ( v ∗) )= 

1 
τ

{ ∑ 

S∈U 

a 2 
i 
(S) v 2 

i, ∗(S) 

p(S) 
−α2 

i ( v ∗) 

} 

:= 

1 
τ σ 2 

i 
, ∀i ∈ N. 
(c) ˜ α( v ∗) 
a.s. −→ α( v ∗) , as τ −→ ∞ . 

(d) 
√ 

τ
(

˜ αi ( v ∗) − αi ( v ∗) 
)
/σi 

d −→ Z ∼ N ( 0 , 1 ) , ∀ i ∈ N. 

roof. These results are straightforward from Theorem 1 and the

xplicit expressions for α
(̃

 v ∗
)

given in (6) . �

We will follow the usual convention 0 / 0 = 0 . With this con-

ention we can assign p(S) = 0 in those expressions of S with

 i (S) = 0 . Doing so, expressions like a (S) ◦˜ v ∗(S) = M S v ∗(S) / (τ p(S))

nd similar ones make sense. 

Again, property (a) in Theorem 2 shows that our approxima-

ions are unbiased and property (b) means that as the sample

ize increases, i.e., τ → ∞ , the approximation approaches (almost

urely) the true value α( v ∗ ). The vector σ 2 = (σ 2 
1 
, . . . , σ 2 

n ) 
t , in

heorem 2 (b) is related to the precision of our approximations. Let

s write 

2 := A 1 − A 2 , where A 1 := 

∑ 

S∈U 

a 2 (S) ◦ v ∗(S) 

p(S) 
and A 2 := α2 ( v ∗) , 

nd let us define 

˜ 

 1 := 

1 

τ

∑ 

S∈ S 

a 2 (S) ◦ v 2 ∗(S) 

p 2 (S) 
. 

e have 

 ̃

 A 1 := 

1 

τ
E 

( ∑ 

S∈ S 

a 2 (S) ◦ v 2 ∗(S) 

p 2 (S) 

) 

= 

1 

τ
E 

( ∑ 

S∈U 

a 2 (S) ◦ v 2 ∗(S) 

p 2 (S) 
M S 

) 

= E 

( ∑ 

S∈U 

(
a 2 (S) ◦ v ∗(S) 

p(S) 

)
◦˜ v ∗(S) 

) 

= 

∑ 

S∈U 

a 2 (S) ◦ v ∗(S) 

p(S) 
◦ E ̃  v ∗(S) = A 1 , 

hen the approximation 

˜ A 1 is unbiased for A 1 and as an approxi-

ation to σ 2 we propose ˜ 2 := 

˜ A 1 − ˜ α2 ( v ∗) . (7) 

In practice, we should determine the sample size τ in such a

ay that ˜ α( v ∗) is ‘close enough’ to α( v ∗ ). For that purpose, the

ormal approximation given in property (d) of the previous the-

rem is useful. For instance, suppose that τ will be determined

nder the condition that 

 

(∣∣∣˜ αi ( v ∗) − αi ( v ∗) 
∣∣∣ > ε 

)
≤ β

here ε > 0 and β ∈ (0, 1) are given. Using the normal approxima-

ion, we obtain 

≥
(

σi 

ε 
�−1 

(
1 − β

2 

))2 

(8) 

here �−1 denotes the inverse of the distribution function of a

 (0 , 1) random variable. 

The formula (8) for the sample size may have the drawback that

he value of σ 2 
i 

is not known. The solution is that we must ap-

roximate σ 2 
i 

using a sample of size τ 1 (usually much smaller that

). This smaller sample plays here the same role as the pilot sam-

les (or training samples) frequently used in Statistics to obtain

rief estimators of quantities of a secondary interest. These brief

stimators are used to estimate some other quantities with more

recision. As an approximation to the unknown variance, σ 2 
i 
, we

ropose here the use of ˜ σ 2 
i,τ1 

, obtained from the expression given

n (7) by using a pilot or training sample of size τ 1 . Finally, the

ample size, τ , is calculated by using (8) with σ i replaced by its

pproximation 

˜ σi,τ1 
. 
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Also, the normal approximation can be used to obtain an (ap-

proximated) (1 − β) - confidence interval for α( v ∗ ) 

˜ α( v ∗) ±
˜ σ√ 

τ
�−1 (1 − β/ 2) . (9)

These intervals can be useful to obtain some information about

the precision of the procedure used in the approximation. 

4. Sampling strategies 

A crucial step of the method implementation is to determine

the sampling strategy, that is, values for p ( S ) in formula (5) . 

We have considered the following strategies (although any

other sampling mechanism can be easily accommodated): 

• Uniform sampling strategy (USS). All the coalitions of interest

have the same probability of being selected. For instance, if

we are interested in all coalitions, then p(S) = 2 −n . If we are

interested in all the coalitions containing a given player, then

p(S) = 2 −(n −1) . 
• Weighted sampling strategy (WSS). The coalitions are chosen in

two steps. Firstly, the size of the coalition, s , is chosen at ran-

dom. Then a coalition of size s is selected with uniform proba-

bility. 
• Stratified sampling strategy (SSS). The set of all the coalitions U

is partitioned in strata, where each stratum is formed by the

coalitions of equal size s , e.g. U s = { S : | S| = s } . A sample of size

τ s is selected with uniform probability from stratum U s such

that the sample of coalitions, S , is of size τ = 

∑ 

s τs . It is worth

noting that stratified sampling allows, at least theoretically, to

optimally allocate the sample size τ to strata, (optimally in the

sense that appropriate values of τ s can reduce the estimation

standard error). See Castro et al. (2017) for details. 

Next we show how sampling strategies are applied to stochastic

values, obtaining as corollaries specific expression of variances and

standard errors. 

4.1. Estimation of the mean value 

The simplest case is the estimation of (4) with uniform prob-

ability sampling in the family of sets containing the i th player.

Therefore all formulas must be applied with p(S) = 2 −(n −1) , for S

such that i ∈ S and p(S) = 0 otherwise and the approximation pro-

posed in (6) is: 

˜ αi := 

1 

τ

∑ 

S∈ S 
v (S) , (10)

where S = (S 1 , . . . , S τ ) is the random sample of size τ of the se-

lected subsets. Using (7) , we get 

˜ σ 2 
i 

= 

1 

τ

∑ 

S∈ S 
v 2 (S) − ˜ αi 

2 
. (11)

It is worth noting that these formulas straightforwardly corre-

spond to the usual expression of the estimators of the mean and

variance of a random variable. 

4.2. Estimation of the Shapley value 

The Shapley value is the most important value for cooperative

games and for that reason, our main computational experiments

apply the stochastic approximation to Shapley estimates. For the

estimation of i th player’s Shapley value, we will use two different

approaches: The first relies on its original expression as a sequence

average (2) , the second relies on being a special case of the Least

Squares formula (3) . 
.2.1. Computing the Shapley value from the sequence formula 

In order to apply our methodology to estimate the Shapley

alue using the original expressions (2) , we can apply a WSS strat-

gy. More specifically, as we will select coalitions not containing

he i th player, we will choose firstly s ∈ { 0 , . . . , n − 1 } , the size of

he subset (possibly empty) that does not contain player- i with

niform probability (1/ n ) and in the second stage we choose at

andom a subset of size s with uniform probability ( 1 / 
(

n −1 
s 

)
). Then,

p(S) = 

1 

n 

(
n −1 

s 

) = 

s !(n − s − 1)! 

n ! 
, for S such that i / ∈ S, (12)

nd p(S) = 0 otherwise. Then, the approximations given in (6) and

7) yield respectively, 

˜ 

i = 

1 

τ

∑ 

S∈ S 
v ∗,i (S) and 

˜ σ 2 
i 

= 

1 

τ

∑ 

S∈ S 
v 2 ∗,i (S) − ˜ φi 

2 
. (13)

It is worth noting that these expressions correspond to the ones

roposed in Castro et al. (2009) , showing the generality of our ap-

roach. 

.2.2. Computing the Shapley value from the Least Squares formula 

To estimate the Shapley value from (3) , we first show how the

east Squares formula (3) corresponds to the general one (1) , for

hich the approximation theory is developed. 

Then, we will compare two implementations of the stochas-

ic approximation, relying on different interpretations of the Least

quares formula that lead to two different sampling strategies: 1)

 weighted sampling; and 2) a stratified sampling. 

The Least Squares value of a cooperative game is, see Ruiz et al.

1998) : 

 i (v ) = 

v (N) 

n 

+ 

1 

nκ
( na m 

i (v ) ︸ ︷︷ ︸ 
1 st term 

−
∑ 

j 

a m 

j (v )) ︸ ︷︷ ︸ 
2 nd term 

, ∀ i ∈ N, (14)

here a m 

i 
(v ) = 

∑ 

i ∈ S⊂N m (s ) v (S) with | S| = s and κ = 

∑ n −1
s =1 

 (s ) 
(

n −2 
s −1 

)
. Formula (14) can be rewritten as a weighted sum

n the form of (1) (in which U are all non empty and proper

ubsets of N ): 

 i (v ) = 

v (N) 

n 

+ 

∑ 

S∈U 
a i (S) v (S) , ∀ i ∈ N. (15)

In Eq. (15) the weights a i ( S ) are determined as follows: the val-

es v (S) appear in (14) for all S ⊂ N . If i ∈ S , the term v (S) appears

n the first term with weight n m ( s ), then in the second term with

eight s m ( s ) (one for each j ∈ S ). If i 	∈ S , v (S) appears only in the

econd term with weight s m ( s ). So that: 

 i (S) = 

⎧ ⎨ ⎩ 

(n −s ) m (s ) 
nκ , i ∈ S 

− sm (s ) 
nκ , i / ∈ S. 

(16)

The Shapley value is then obtained when: 

 (s ) = 

1 

n − 1 

(
n − 2 

s − 1 

)−1 

and κ = 1 . (17)

Let S = (S 1 , . . . , S τ ) be a random sample of U of size τ , the

tochastic approximation of the Shapley value is: 

˜ 
i (v ) = 

v (N) 

n 

+ 

1 

τ

∑ 

S∈ S 

a i (s ) 

p(S) 
v (S) , ∀ i ∈ N. (18)

Next, we discuss two different sampling procedures to approxi-

ate (18) . 
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{ 1 1 1 2 1  
• Weighted sampling: Addends of formula (18) are sampled with

different probabilities, according to their importance to deter-

mine ˜ φi (v ) . 
• Stratified sampling: We decompose formula (18) into several

addends, e.g., strata, that are separately estimated and then

arithmetically aggregated. 

The first procedure is the weighted sampling strategy (WSS), in

hich ∅ (the empty set) and the grand coalition N are excluded

rom the sampling scheme. The reason is that a i (∅ ) = a i (N) = 0 .

o, the two stages for the selection of a coalition are: firstly, we

hoose the size of the subset s ∈ { 1 , . . . , n − 1 } (excluding ∅ and N )

ith uniform probability (n − 1) −1 . Secondly, we choose a subset

f size s with uniform probability 
(

n 
s 

)−1 
. Therefore: 

p(S) = 

1 

(n − 1) 
(

n 
s 

) , for S such that i ∈ S, (19)

nd p(S) = 0 otherwise. 

Therefore, from Eq. (16) , taking advantage that: 

n − 2 

s − 1 

)−1 (
n 

s 

)
= 

n (n − 1) 

s (n − s ) 
(20) 

e have that: 

a i (s ) 

p(S) 
= 

{ n −1 
s 

, i ∈ S 

− n −1 
n −s 

, i / ∈ S. 

(21) 

Then, formula (18) is: 

˜ 
i (v )= 

v (N) 

n 

+ 

1 

τ

⎡ ⎣ 

∑ 

S∈ S 
i ∈ S 

(
n − 1 

s 

)
v ( S) −

∑ 

S∈ S 
i / ∈ S 

(
n − 1 

n − s 

)
v (S) 

⎤ ⎦ , ∀ i ∈ N.

(22) 

Therefore, when applying weighted sampling to the Least

quares, every time that a set S is drawn, the value v (S) is used

o calculate ˜ φi for every i ∈ N . But the weights a i ( S ) are different

epending on the cases i ∈ S or not. 

The second approach is to apply stratified sampling. We start

ith a different Least Squares approximation, elaborating the sum-

ation (14) into separated terms a m 

i 
(v ) and observing that: 

 

m 

i (v ) = 

∑ 

i ∈ S⊂N 

m (s ) v (S) = 

n −1 ∑ 

s =1 

∑ 

S⊂N | S| = s 
i ∈ S 

m (s ) v (S) 

︸ ︷︷ ︸ 
a m 

i,s 
(v ) 

. (23)

Then we apply stratified sampling to estimate a m 

i,s 
(v ) , so that

 sample set S i,s of cardinality τ is is drawn from U i,s with uni-

orm probability, and we have 1 
p(S) 

= 

(
n −1 
s −1 

)
. The Shapley value is

alculated by the Least Squares formula with m (s ) = 

1 
n −1 

(
n −2 
s −1 

)−1 
,

herefore the Shapley stochastic approximation is obtained through

23) with: 

˜ 

 

m 

i,s ( v ) = a m 

i,s ( ̃  υ) = 

m (s ) 

p(S) τis 

∑ 

S∈ S i,s 
υ(S) = 

1 

τis (n − s ) 

∑ 

S∈ S i,s 
υ(S) (24)

We use a m 

i,s ( ̃  υ) to estimate a m 

i,s 
(v ) , then we use the estimated

alue to calculate the estimated a m 

i ( ̃  υ) , and finally we calculate

he estimated 

˜ φi : 

˜ 
i (v ) = 

v (N) 

n 

+ 

n − 1 

n 

a m 

i ( ̃  υ) − 1 

n 

∑ 

j : j 	 = i 
a m 

j ( ̃  υ) , ∀ i ∈ N. (25)
Regarding the standard error of the stratified sampling, we can

stimate Var [ a m 

i,s ( ̃  υ) ] using formula (7) , and then, considering the

inear combinations of formulas (24) and (25) , we obtain: 

ar [ a m 

i ( ̃  υ) ] = 

∑ 

s 

Var [ a m 

i,s ( ̃  υ) ] (26)

nd: 

ar [ ̃  φi ] = 

(
n − 1 

n 

)2 

Var [ a m 

i ( ̃  υ) ] + 

(
1 

n 

)2 ∑ 

j 	 = i 
Var [ a m 

j ( ̃  υ) ] . (27)

When implementing stratified sampling, it is worth noting that,

ccording to Formula (24) and when we calculate v (S) , then this

alue can be used for all i ∈ S ⊂ N . Therefore in our implementa-

ions we fix τ s and we will draw S from U s . Then the actual values

is , that are necessary in (24) , are sample dependent. 

.3. Improvements towards symmetry and efficiency: The projection 

ethod 

It is well known that the Shapley values satisfy the property of

fficiency, that is, 
∑ n 

i =1 φi = v (N) . In principle the estimated val-

es, ˜ φi , do not satisfy the efficiency property. Instead, we have
 n 
i =1 E ̃

 φi = v (N) . Similarly, symmetry (equal Shapley values for

quivalent players) is not guaranteed in our approximations due to

he obvious random fluctuations in the sampling strategies. Any-

ay, efficiency and symmetry can be recovered after the estima-

ion of ˜ φ = ( ̃  φ1 , . . . , ̃
 φn ) by solving the optimization problem 

 

 

 

min x ∈ R n 
∥∥x − ˜ φ

∥∥2 ∑ n 
i =1 x i = v (N) 

x i = x j , if i and j are equivalent players 

here ‖ · ‖ denotes the Euclidean norm. It can be seen that the

bove problem is an easy convex quadratic optimization problem

ith linear constraints, for which solvers are available for all com-

on platforms. 

An argument in favour of the orthogonal projection is that it

lways improves the mean quadratic error. Indeed, let us denote

y φ, ̃  φ and 

˜ φort , the vector of true Shapley values, the stochas-

ic approximation and the orthogonal projection of ˜ φ onto the

yperplane 
∑ 

i ∈ N x i = v (N) , (or another convenient vector space,

s for instance symmetry conditions for equivalent players), re-

pectively. Since the true Shapley value is in the hyperplane
 

i ∈ N x i = v (N) then by the projection theorem ‖ φ − φort ‖ ≤ ‖ φ −˜ ‖ and thus ˜ φort is closer to φ than 

˜ φ, and, moreover, having

he advantage that it is efficient. Using again the projection the-

rem and the property of monotony of expected values, we have:

 

(‖ φ − ˜ φort ‖ 2 
)

≤ E 

(‖ φ − ˜ φ‖ 2 ), meaning that the orthogonal pro-

ection always improves the overall mean quadratic error. 

. Applications to some distinguished cooperative games 

In this section we show how to implement our methodology

o different applications. We consider the gloves game, the airport

ame, the voting game the linear production game and the assign-

ent game and the different game values: the mean value (4) , the

hapley value (2) , and the Least Squares value (3) . Finally, we ap-

ly formulas with distinct sampling strategies: uniform, WSS and

SS. To appreciate the computational time saved using our approx-

mation, in all test we will report the sampling ratio f = τ/ 2 n (or

/ 2 n −1 ). 

.1. The gloves game 

Suppose a game (N, v ) with set of players N =
 

1 , . . . , n , n + 1 , . . . , n + n } , where the first n elements
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represent left hand gloves and the remaining n 2 are right

hand gloves. Let n = n 1 + n 2 . For any subset S ⊆N , we consider

v (S) = min 

{| S left | , 
∣∣S right 

∣∣}, where 

S left = S ∩ { 1 , . . . , n 1 } and S right = S ∩ { n 1 + 1 , . . . , n 1 + n 2 } . 
It can be checked that, for i = 1 , . . . , n 1 the mean value defined

in (4) is 

αi (v ) = 

min { n 1 , n 2 } ∑ 

k =0 

kp k 

where 

p k = 

1 

2 

n −1 

{(
n 2 

k 

) n 1 ∑ 

j= k +1 

(
n 1 − 1 

j − 1 

)
+ 

(
n 1 − 1 

k − 1 

) n 2 ∑ 

j= k +1 

(
n 2 

j 

)
+ 

(
n 1 − 1 

k − 1 

)(
n 2 

k 

)}
, (28)

for k = 0 , . . . , min { n 1 , n 2 } . A similar formula for αi (v ) with i = n 1 +
1 , . . . , n can be obtained by interchanging n 1 and n 2 in (28) . (We

assume the usual conventions 
∑ a 

b · = 0 and 

(
a 
b 

)
= 0 if a < b .) 

Under the uniform sampling, in the set of coalitions containing

the player i , the approximations given in (10) and (11) result in 

˜ αi = 

1 

τ

min { n 1 , n 2 } ∑ 

k =0 

kW k and 

˜ σ 2 
i 

= 

1 

τ

min { n 1 , n 2 } ∑ 

k =0 

k 2 W k − ˜ α2 
i , 

with W k = number of subsets with min 

{| S left | , 
∣∣S right 

∣∣} = k among

the τ selected. Note that W = 

(
W 0 , . . . , W min { n 1 , n 2 } 

)
is a random

vector following a multinomial M 

(
τ, p 1 , . . . , p min { n 1 , n 2 } 

)
distribu-

tion. 

For instance, in the case n 1 = 30 and n 2 = 15 we illustrate our

approximation with a sample size τ = 10 0 0 for the mean value of

players i = 1 and i = 31 . The results are presented in the following

table 

Player Exact (αi ) ˜ αi 
˜ σ 2 

i 
95% -confidence interval 

1 7.4925 7.482 3.6957 (7 . 4782 , 7 . 4858) 

31 7.9812 7.949 3.14 4 4 (7 . 9455 , 7 . 9525) 

These results show that the estimation is rather accurate even

for a very small sampling fraction f = 10 0 0 / 2 44 = 5 . 68 × 10 −11 . 

We also consider the Shapley value of this game. For i =
1 , . . . , n 1 , and S such that i 	∈ S , we consider 

v i, ∗(S) = v (S ∪ { i } ) − v (S) = 

{
1 , | S left | < | S right | , 
0 , | S left | ≥ | S right | . 

The number of coalitions of size s = | S| = { 1 , . . . , n − 1 } with i 	∈ S

and | S left | < | S right | is 
∑ 

t<s/ 2 

(
n 1 −1 

t 

)(
n 2 
s −t 

)
, then the corresponding

Shapley value is 

φi (v ) = 

n −1 ∑ 

s =1 

s !(n − s − 1)! 

n ! 

∑ 

t<s/ 2 

(
n 1 − 1 

t 

)(
n 2 

s − t 

)
, ∀ i ∈ N. 

Under the sampling strategy WSS described in (12) , the approx-

imations given in (13) are 

˜ φi = 

1 

τ
U i and 

˜ σ 2 
i 

= 

˜ φi (1 − ˜ φi ) , 

with U i = number of coalitions sampled for which | S left | < | S right | (re-

call that the sampling is performed in the set of coalitions not con-

taining player i ). We have that U i is a binomial random variable,

namely U i ∼ Binomial ( τ , p i ), where p i = 

1 
n 

∑ n −1 
s =1 

∑ 

t<s/ 2 
( 

n 1 −1 
t ) ( 

n 2 
s −t ) 

( n −1 
s ) 

.

gain, the properties stated in Theorem 2 can be checked directly

nd for instance, we have 

 ̃

 φi = p i = φi and V ar( ̃  φi ) = 

1 

τ
φi (1 − φi , ∀ i ∈ N. 

As a numerical example, suppose again that n 1 = 30 and n 2 =
5 . Firstly, we run a pilot sample of size 500 and we obtained˜ 2 
1 

= 0 . 0529 . This approximation to the variance was used in for-

ula (8) along with the values ε = 0 . 01 and β = 0 . 05 , so that we

btain a sample size τ = 2033 ( f = 2033 / 2 44 = 1 . 1510 −10 ) and for

his sample size we report the results presented in the following

able 

Player Exact (φi ) 
˜ φi 

˜ σ 2 
i 

95% -confidence interval 

1 0.04475 0.0497 0.0472 (0 . 04 94 9 , 0 . 04 991) 

31 0 . 91050 0.9134 0.0787 (0 . 91363 , 0 . 91417) 

As compared with the previous estimates for the mean value,

oubling the sample size, we get an improvement of the results of

he standard errors of one order of magnitude. 

Moreover, using the correction towards efficiency and symme-

ry, we solve the optimization problem 

min 30(x 1 − ˜ φ1 ) 
2 + 15(x 2 − ˜ φ2 ) 

2 

30 x 1 + 15 x 2 = 15 

o that the corrected values are: ˆ x 1 = 0 . 04458 and ˆ x 2 = 0 . 09108 ,

hich are even closer to the exact Shapley values. 

.2. The airport game 

Let (N, v ) be an airport game, with N = { 1 , . . . , n } , see

ittlechild and Owen (1973) . The characteristic function is de-

ned as follows. Consider integers 0 = n 0 < n 1 < · · · < n k = n

nd 0 = c 0 < c 1 < · · · < c k . For i ∈ N , define c(i ) = c r , if i ∈ A r :=
 

n r−1 + 1 , . . . , n r } . For S ⊂ N the characteristic function is v (S) =
ax { c(i ) : i ∈ S} . 

Let i ∈ N with c(i ) = c r , then elementary combinatorial argu-

ents show that 

 { S ⊂ N : i ∈ S and v (S) = c j } = 

{ 

2 

n r −1 , if j = r 

2 

n j −1 − 2 

n j−1 −1 −, if j > r 

hen, the mean value, (4) , is 

i (v ) = 

k ∑ 

j= r 
c j p 

(i ) 
j 

, (29)

ith 

p (i ) 
j 

= 

⎧ ⎨ ⎩ 

1 

2 

n −n r 
, i f j = r 

1 

2 

n −n j 
− 1 

2 

n −n j−1 
, i f j > r. 

Sampling τ coalitions with uniform probability in the set of

oalitions containing the i th player, and using the approximations

iven in (10) and (11) , we obtain 

˜ i = 

1 

τ

k ∑ 

j= r 
c j W 

(i ) 
j 

and 

˜ σ 2 
i 

= 

1 

τ

k ∑ 

j= r 
c 2 j W 

(i ) 
j 

− ˜ α2 
i 

ith W 

(i ) 
j 

= number of selected coalitions with v (S) = c j among the

selected. Note that W 

(i ) = (W 

(i ) 
r , . . . , W 

(i ) 
k 

) ∼ M (τ ; p (i ) 
r , . . . , p (i ) 

k 
) .

t is well known, that under multinomial sampling the proportion

 

(i ) 
j 

/τ is unbiased of its expected value, p (i ) 
j 

, then 

˜ αi is unbiased

or (29) , in agreement with Theorem 2 (a). 
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Table 1 

Results for the mean value of the airport game with τ = 14036 . 

Player Exact ( αi ) ˜ αi 
˜ σ 2 

i 
95%-confidence interval 

1 9.0854 9.0968 1.3322 (9.0966, 9.0969) 

11 9.0854 9.0649 1.3528 (9.0647, 9.0651) 

21 9.0854 9.0754 1.3277 (9.0753, 9.0756) 

29 9.0854 9.0948 1.3251 (9.0947, 9.095) 

35 9.0859 9.0726 1.352 (9.0724, 9.0728) 

39 9.0938 9.089 1.2751 (9.0888, 9.0891) 

41 9.125 9.1225 1.1196 (9.1224, 9.1227) 

43 9.25 9.239 0.6977 (9.2389, 9.2391) 

44 9.5 9.497 0.25 (9.4 969, 9.4 971) 

45 10.0 10.0 0.0 (10.0, 10.0) 
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Table 2 

Results for the Shapley value of the airport game with τ = 278581 . 

Player Exact ( φ i ) 
˜ φi 

˜ σ 2 
i 

99%-confidence interval 

1 0.0222 0.0222 0.0 (0.0222, 0.0222) 

11 0.0508 0.0509 0.0195 (0.0509, 0.0509) 

21 0.0908 0.0915 0.0918 (0.0915, 0.0915) 

29 0.1496 0.1492 0.244 (0.1492, 0.1493) 

35 0.2405 0.2402 0.5169 (0.2402, 0.2402) 

39 0.3834 0.3842 0.952 (0.3841, 0.3842) 

41 0.5834 0.5827 1.5167 (0.5826, 0.5827) 

43 0.9167 0.918 2.4164 (0.918, 0.918) 

44 1.4167 1.4116 3.3844 (1.4116, 1.4116) 

45 2.4167 2.4142 4.2718 (2.4142, 2.4142) 
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As a numerical example, we consider n = 45 players, c r = r, for

 = 1 , . . . , 10 and n r given in the following table: 

n 1 n 2 n 3 n 4 n 5 n 6 n 7 n 8 n 9 n 10 

10 20 28 34 38 40 42 43 44 45 

We run a training sample of size τ0 = 500 , obtaining an esti-

ate of the variance of the mean value of the first player, ˜ σ 2 
1 

=
 . 1184 . This value along with ε = 0 . 05 and β = 0 . 05 were used to

etermine the sample size τ = 14036 ( f = 7 . 9810 −10 ), see (8) . For

his sample size we obtain the results shown in Table 1 . 

Estimation of the Shapley value of the player i ∈ A r = { n r−1 +
 , . . . , n r } . 

Given a coalition S ⊂ N �{ i }, let us define � (S) = max { j : S ∩ A j 	 =
} (for convenience, max ∅ = 0 , so that � (∅ ) = 0 ). Then, 

 i, ∗(S) = v (S ∪ { i } ) − v (S) = 

{ 

0 , if � (S) ≥ r 

c r − c � (S) , if � (S) < r 

nd for 0 ≤ j < r 

 { S : S ⊂ N \ { i } , | S| = s and � (S) = j} = 

(
n j 

s 

)
−
(

n j−1 

s 

)
, s ≥ 0 ,

for convenience, n −1 = −1 ) then, after some algebra, the exact

hapley value is 

i := φi (v ) = 

∑ 

S⊆N−{ i } 

s ! (n − s − 1)! 

n ! 
v i, ∗(S) 

= 

n −1 ∑ 

s =0 

s ! (n − s − 1)! 

n ! 

r−1 ∑ 

j=0 

∑ 

S⊂N−{ i } 
| S| = s 

� (S)= j 

(
c r − c j 

)

= 

n −1 ∑ 

s =0 

s ! (n − s − 1)! 

n ! 

r−1 ∑ 

j=0 

(
c r − c j 

){(n j 

s 

)
−
(

n j−1 

s 

)}
= 

n −1 ∑ 

s =0 

s ! (n − s − 1)! 

n ! 

r−1 ∑ 

j=0 

(
n j 

s 

)(
c j+1 − c j 

)
, ∀ i ∈ N. 

or the estimation of φi , for i ∈ A r , we can take advantage of the

act that v i, ∗(S) = 0 if � ( S ) ≥ r , so that instead of the sampling

cheme given in (12) , we propose the following probability on the

et of coalitions not containing player i , 

p(S) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

1 

(n r−1 +1) 
(

n r−1 

s 

) , if � (S) ≤r−1 and | S| = s ∈ { 0 , . . . , n r−1 }

0 , otherwise 

(30) 

hich can be seen as a two stages sampling such that in the first

tage the size of the coalition (not containing player i ), s , is se-

ected with equal probability among { 0 , . . . , n r−1 } and in the sec-

nd stage a coalition is selected with uniform probability within
he set of coalitions of size s with � (S) ≤ r − 1 . Define the random

ariables W s, j = number of coalitions with � (S) = j and | S| = s among

he τ selected . Then, the approximations given in (6) and (7) yield,

espectively 

˜ φi = 

(n r−1 + 1)! 

τ n ! 

n r−1 ∑ 

s =0 

(n − s − 1)! 

(n r−1 − s )! 

r−1 ∑ 

j=0 

(
c r − c j 

)
W s, j , 

˜ 2 
i 

= 

1 

τ

(
(n r−1 + 1)! 

n ! 

)2 n r −1 ∑ 

s =0 

(
(n − s − 1)! 

(n r−1 − s )! 

)2 r−1 ∑ 

j=0 

(
c r − c j 

)2 
W s, j 

− ˜ φ2 
i . 

Similarly as in the previous example, we run a training sample

f size τ0 = 10 0 0 and obtained 

˜ σ 2 
45 

= 2 . 341 . For β = 0 . 01 and ε =
 . 01 , we determined the sample size τ = 278581 ( f = 1 . 5810 −8 ).

or this sample size we obtained the results reported in Table 2 . 

.3. The voting game 

The voting game is defined on a set N of | N| = n players, char-

cterized by voting weights w i , i = 1 , . . . , n, and by the quota q

ecessary to approve an act. Therefore the characteristic function

s v (S) = 1 , if 
∑ 

i ∈ S w i ≥ q, v (S) = 0 otherwise. The Shapley value

s used in this framework to characterize players’ voting power.

e will estimate the Shapley value through the Least Squares

ormula, comparing weighted (WSS) and stratified (SSS) sampling

rst, and then comparing our results with the ones obtained by the

lgorithm Two-Stage-St-ApproShapley-opt proposed in Castro et al.

2017) . 

We can see that in this game Eq. (24) can be re-interpreted. Let

 i , s be the probability that v (S) = 1 for S such that i ∈ S and | S| = s,

hen: 

˜ 

 

m 

i,s ( v ) = 

1 

(n − s ) 

[ 

1 

τis 

∑ 

S∈ S i,s 
υ(S) 

] 

︸ ︷︷ ︸ 
˜ p i,s 

(31) 

n which ˜ p i,s is the usual estimator of p i , s . To calculate variances,

ecessary to obtain the estimator of standard errors from Eqs.

26) and (27) , we can readily see that: 

ar [ ̃  a m 

i,s ( v ) ] = 

1 

(n − s ) 2 
p i,s (1 − p i,s ) 

τis 

. (32) 

.3.1. An algorithmic framework for the application of the stratified 

ampling strategy in voting games 

We will see that using the Least Squares formula of the Shap-

ey value (25) , with stratified sampling strategy outperforms previ-

us approximations suggested so far. For this reason, this subsec-

ion describes an efficient implementation to compute the Shapley

alue using this sampling strategy. The pseudocode of this method

s reported in Algorithm 1 . 
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Algorithm 1: Estimating the Shapley value of the Voting 

Game. 
Input : A Voting Game G = { q ; w 1 , w 2 , . . . , w n } , τ = the maximum number of v (S) evaluation. 

Output : ˜ φi , i = 1 , . . . , n : i th player’s estimated Shapley value, ˜ σi , i = 1 , . . . , n , the standard errors 

of ˜ φi . 

1 k 1 ← max {| S| : v (S) = 0 for all S} + 1 
2 k 2 ← min {| S| : v (S) = 1 for all S} − 1 

3 range ← k 2 − k 1 + 1 
4 m 

exp 
s ← τ/ (2 ∗ range ) 

5 for s ← k 1 to k 2 do 
6 for i ← 1 to n do 
7 v is ← 0 

8 τis ← 0 

9 for s ← k 1 to k 2 do 

10 for t ← 1 to m exp do 
11 S ← Sample (U s ) 
12 for i ∈ S do 
13 v is ← v is + v (S) 

14 τis ← τis + 1 

15 for s ← k 1 to k 2 do 
16 for i ∈ N do 
17 ˜ p is ← v is /τis 

18 var [ ̃ a is ] ← (n − s ) −2 ˜ p is (1 − ˜ p is ) 

19 m st 
s ← Allocate (τ / 2 , Var [ ̃ a is ]) 

20 for s ← k 1 to k 2 do 

21 for t ← 1 to m st 
s do 

22 S ← Sample (U s ) 
23 for i ∈ S do 
24 v is ← v is + v (S) 

25 τis ← τis + 1 

26 for s ← k 1 to k 2 do 
27 for i ∈ S do 
28 ˜ p is ← v is /τis 

29 ˜ a is = (n − s ) −1 ˜ p is 

30 var [ ̃ a is ] ← (n − s ) −2 ˜ p is (1 − ˜ p is ) /τis 

31 for s ← 1 to k 1 − 1 do 
32 for i ← 1 to n do 
33 ˜ p is ← 0 

34 ˜ a is ← 0 

35 Var [ ̃ a is ] ← 0 

36 for s ← k 2 + 1 to n − 1 do 
37 for i ← 1 to n do 
38 ˜ p is ← 1 

39 ˜ a is ← 1 / (n − s ) 

40 Var [ ̃ a is ] ← 0 

41 for i ← 1 to n do 

42 ˜ a i ← 

∑ n −1 
i =1 

˜ a is 

43 Var [ ̃ a i ] ← 

∑ n −1 
i =1 

Var [ ̃ a is ] 

44 ˜ φi ← 1 /n + (1 /n )(n ̃ a i −
∑ n 

i =1 
˜ a i ) 

45 Var [ ̃ φi ] = ( n −1 
n ) 2 Var [ ̃ a i ] + ( 1 n ) 

2 ( 
∑ n 

j =1 ; j 	 = i Var [ a j ]) 

46 ˜ σi = Var [ ̃ φi ] 
1 / 2 

47 ˜ φi ← Project ( ̃ φi ) 

48 return ˜ φi , ˜ σi for i = 1 , . . . , n 
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We describe in the following the details of that implementa-

tion. Lines 1 and 2 are preliminary steps in which we are taking

advantage that in voting games there are two indexes, k 1 and k 2 ,

such that v (S) = 0 for all S , | S | < k 1 , and v (S) = 1 for all S , | S | > k 2 .

In those cases the estimate of p i , s is trivial and no variance is to be

accounted for. For k 1 ≤ | S | ≤ k 2 , the necessary data structures are

initialized in Lines 5–8. 

Then we begin to sample strata U s , see line 11 and line 22.

When using stratified sampling, and with the aim of reducing the

standard error, it is suggested to allocate a different number of

sample units to each stratum, with more units allocated to the

strata with the greatest variability, see Maleki, Tran-Thanh, Hines,

Rahwan, and Rogers (2014) and Castro et al. (2017) . We implement

this observation dividing the estimate into two blocks. In the first

block, beginning in line 9, strata U s are sampled evenly. In the sec-

ond block, beginning in line 20, more sample units are assigned

to those strata with the greatest variances, according to the sub-

routine of line 19, that will be explained later. In each block, the

sample size is one half the total size, as can be seen in line 4 and

the input of subroutine Allocate in line 19. 
In the first block, lines 9–14 are the sampling process and lines

5–18 are the pilot variances estimates. Note that in line 11, S is

ampled from U s , namely the family of cardinality s subsets, and

hat in line 13 the characteristic function v (S) is used for all i ∈ S ,

ontrolling values τ is in Line 14. When we look at the second

lock, we can recognize that lines 19–25 continue the sample pro-

ess, lines 26–30 compile data structures for the case k 1 ≤ s ≤ k 2 ,

nd lines 31–35 and 36–40 compile data structures for the case

 < k 1 and the case s > k 2 , respectively. Finally, lines 41–46 are de-

oted to compute the estimate of the Shapley value ˜ φi and its stan-

ard error, ˜ σi for all i . The output can be further refined through

he quadratic projection of Line 45, described in Section 4.3 . The

lgorithm has been coded in R, sampling in line 11 and 22 is done

hrough the R subroutines. 

Procedure Allocate , in line 19, implements the optimal sample

ize allocation described in Castro et al. (2017) . It takes as input

he pilot variances calculated in Line 18 and the remaining sample

ize τ /2. The outputs are the optimal sample sizes m 

st 
s allocated

o each stratum s . Note that we control values τ s , not τ i , s as in

astro et al. (2017) , therefore, to apply the procedure described in

roposition 3.1 of Castro et al. (2017) , we use the strata variability

˜ 2 s = 

∑ 

i Var [ ̃  a is ] . 

.3.2. Computational experiments on voting games 

In what follows, we report on the two computational experi-

ents that we have performed based on voting games. The first

xperiment considers a small size game with n = 17 players. Let 

 = { quota = 45 ; w = [11 , 11 , 9 , 9 , 8 , 8 , 5 , 5 , 4 , 4 , 3 , 3 , 3 , 1 , 1 , 1 , 1] } .
s the number of players of this game is relatively small, we can

alculate the exact Shapley value φi for all i = 1 , . . . , n . In the first

xperiment we compare three algorithms: WSS and two versions

f SSS, with and without the projection of Line 47 in Algorithm 1 .

heir performance is compared using the sum of absolute differ-

nces between true and estimated values: error := 

∑ n 
i =1 | ̃  φi − φi | .

ontrolling for the sampling ratio f = τ/ 2 n , the results are re-

orted in Fig. 1 . It can be seen that the SSS approximation error

s much better than the one of WSS, and this result is confirmed

n many other tests not reported here. Moreover, we zoom Fig. 1 (a)

n Fig. 1 (b) to appreciate the effect of projection: On average, it de-

reases the approximation error by more than 20%. 

Next we focus on SSS algorithm, applied to the same small

oting game. In Table 3 , we report an example of the computa-

ional results, calculated with parameter τ = 50 0 0 ( f = 0 . 076 ).

e compare three approximations: the first one is the plain SSS

without sample allocation and optimal projection); the second

ne is the SSS with optimal sample allocation; and the third one

s SSS with optimal sample allocation and quadratic projection.

olumns headed Error-(1/2/3) report the absolute differences

etween the true and estimated Shapley values, columns headed

D-(1/2) report the standard errors. We observe that estimates

mprove as we incorporate optimal sampling and projection. The

verage of the errors decreases around 17% when using optimal

ampling; then after projection an additional gain of 20% is ob-

ained. We can also see that the optimal sampling decreases the

tandard errors 9% on average. We repeat the test with other

alues of τ and for other voting games, finding that the outcomes

re always very similar: Both subroutines have a positive effect,

hey both decreases the average error by at least 15% each, while

ptimal sampling decreases the average error too, with standard

rrors lowering of some 8–10%. 

Our next experiment compares Algorithm 1 with the Two-Stage-

t-ApproShapley-opt proposed in Castro et al. (2017) , applied to the

arge voting game described in Owen (1995) . The game is defined

or n = 51 players and the exact Shapley values are available from

he literature. The previous approach consists of approximating
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Fig. 1. Sum of approximation errors of the small voting game. Dotted line: Weighted sampling (WSS), Broken line: Stratified sampling (SSS), Continuous line: Stratified 

sampling and quadratic projection. 

Table 3 

Exact and approximate Shapley values of the voting game, n = 17 and τ = 50 0 0 . 

Player Weight Exact Error-1 Error-2 Error-3 SD-1 SD-2 

1 11 0.132334 0.010916 0.002092 0.002522 0.005736 0.005259 

2 11 0.132334 0.005683 0.002951 0.002522 0.005730 0.005083 

3 9 0.105231 0.0 0 0922 0.007886 0.004111 0.005927 0.005305 

4 9 0.105231 0.002580 0.0 0 0335 0.004111 0.005823 0.005067 

5 8 0.092347 0.002371 0.001957 0.0 0 0129 0.005729 0.005343 

6 8 0.092347 0.003773 0.002215 0.0 0 0129 0.005823 0.005331 

7 5 0.055663 0.003794 0.009373 0.006787 0.005974 0.005348 

8 5 0.055663 0.006420 0.004201 0.006787 0.005882 0.005412 

9 4 0.044042 0.001207 0.002946 0.001609 0.005981 0.005398 

10 4 0.044042 0.004047 0.0 0 0271 0.001609 0.005957 0.005306 

11 3 0.032717 0.005768 0.005050 0.002458 0.005863 0.005459 

12 3 0.032717 0.0 010 03 0.001224 0.002458 0.005896 0.005440 

13 3 0.032717 0.004767 0.0 0110 0 0.002458 0.005891 0.005345 

14 1 0.010653 0.003417 0.001616 0.001181 0.005747 0.005429 

15 1 0.010653 0.002225 0.006675 0.001181 0.005797 0.005363 

16 1 0.010653 0.001750 0.003140 0.001181 0.005748 0.005221 

17 1 0.010653 0.003519 0.0 0 0428 0.001181 0.005657 0.005462 

Average – – 0.003774 0.003145 0.002495 0.005833 0.005328 

t  

t  

m  

S  

n  

c  

c  

a  

b  

m  
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(  

p  

w  

t

Table 4 

SEQ: results provided by Castro et al. (2017) , LS: 

our results. 

τ / n 10 3 10 4 10 5 10 6 

mean SEQ 2.608 0.836 0.223 0.061 

max SEQ 8.468 2.301 0.737 0.183 

mean LS 0.613 0.130 0.056 0.015 

max LS 1.916 0.583 0.628 0.068 

mean LS 
o 0.461 0.177 0.043 0.017 

max LS 
o 1.546 0.628 0.327 0.061 

 

s  

m  

g  

p  
he Shapley value through the average of players’ marginal con-

ributions to sequences. It is worth noting that to calculate the

arginal contribution of one sample unit, the algorithm Two-Stage-

t-ApproShapley-opt requires the evaluation of two values of v (·) ,
amely v (S) and v (S ∪ { i } ) , while in Algorithm 1 when v (S) is cal-

ulated, it contributes to the values of p i , s for all i ∈ S . Therefore we

ould argue that information is better exploited in the latter case,

nd it is expected that the Least Squares approximation should

e better than Two-Stage-St-ApproShapley-opt . In Table 4 , the two

ethods are compared, varying the sampling ratio f = τ/ 2 n . We

ake again the absolute differences between Shapley values, now

onsidering the mean and the maximum of these errors. Super-

cript mean SEQ stands for the results contained in Castro et al.

2017) . Superscript mean LS stands for SSS followed by quadratic

rojection. Finally, superscript and subscript mean LS 
o stands for SSS

ith optimal sample size and quadratic projection. Digits are mul-

iplied 10 3 , as in Castro et al. (2017) . 
The reported results show that the Least Squares methods con-

istently outperform Two-Stage-St-ApproShapley-opt , as the order of

agnitude of both error mean and max are different. Regarding the

ains that can be obtained from the optimal allocation of the sam-

le size, it can be seen that most of the time it actually improves
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Algorithm 2: Estimating the Shapley value of the Production 

Game. 
Input : A Production Game A ∈ R q ×m , B ∈ R q ×n , p ∈ R m , τ = the maximum number of v (S) 

evaluation. 
Output : ˜ φi , i = 1 , . . . , n : i th player’s estimated Shapley value, ˜ σi , i = 1 , . . . , n , the standard errors of 

˜ φi . 

1 for s ← 1 to n − 1 do 
2 for i ← 1 to n do 
3 v is ← 0 

4 v 2 
is 

← 0 

5 τis ← 0 

6 k 1 ← max { s : (n s 

)
≤ τ

n −1 
, s ≤ n 

2 
} 

7 k 2 ← min { s : (n s 

)
≤ τ

n −1 
, s ≥ n 

2 
} 

8 for s ← 1 to k 1 and s ← k 2 to n − 1 do 
9 for all S ∈ U s , i ∈ S do 

10 v is ← v is + v (S) 

11 τis ← τis + 1 

12 τ ← τ −∑ 

s ≤k 1 

(n 
s 

)
−∑ 

s ≥k 2 

(n 
s 

)
13 τs ← 

τ
k 2 −k 1 −1 

14 for s ← k 1 + 1 to k 2 − 1 do 
15 for t ← 1 to τs do 
16 S ← Sample (U s ) 
17 for i ∈ S do 
18 v is ← v is + v (S) 

19 v 2 
is 

← v 2 
is 

+ v (S) 2 

20 τis ← τis + 1 

21 for s ← k 1 + 1 to k 2 − 1 do 
22 for i ← 1 to n do 

23 ˜ a is ← (n − s ) −1 [ v is /τis ] 

24 ˜ a 2 
is 

← v 2 
is 

/τis 

25 Var [ ̃ a is ] ← (n − s ) −2 
[ 
( ̃ a 2 

is 
− ( ̃ a is ) 

2 ) /τis 

] 
26 for s ← 1 to k 1 and s ← k 2 to n − 1 do 
27 for i ← 1 to n do 

28 ˜ a is ← (n − s ) −1 [ v is /τis ] 

29 for i ← 1 to n do 

30 ˜ a i ← 

∑ n −1 
i =1 

˜ a is 

31 ˜ φi ← v (N) /n + (1 /n )(n ̃ a i −
∑ n 

i =1 
˜ a i ) 

32 Var [ ̃ a i ] ← 

∑ k 2 −1 

i = k 1 +1 
Var [ ̃ a is ] 

33 Var [ ̃ φi ] = ( n −1 
n ) 2 Var [ ̃ a i ] + ( 1 n ) 

2 ( 
∑ n 

j =1 ; j 	 = i Var [ ̃ a j ]) 

34 ˜ σi = Var [ ̃ φi ] 
1 / 2 

35 return ˜ φi , ̃ σi for i = 1 , . . . , n 
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the estimates: mean and max usually decrease, but not always, see

the case of ratio 10 4 . The reason to this is that, unreported in the

table, the standard errors always decrease between 10 and 20%

(thanks to the optimal size allocation), but the variability remains:

A point estimate ˜ φi can get worse even though its standard error

is lower. 

5.4. The production game 

Linear production games were introduced by Owen (1995) . Each

agent i ∈ N owns a resource bundle b i ∈ R 

q 
+ . The resources are used

to produce m types of goods according to some technological con-

straint matrix A ∈ R 

q ×m . Goods are then sold at prices p 1 , . . . , p m 

.

When a coalition S is formed, its members pool their resources

b(S) = 

∑ 

i ∈ S b i to maximize the market value of their products. This

class of games has become important among game theoretician by

its implications in the cost sharing field and its equivalence to the

class of all balanced games. The game characteristic function is: 

v (S) = max 

{
m ∑ 

j=1 

p j x j : Ax ≤ b(S) , x = (x 1 , . . . , x m 

) ≥ 0 

}
. (33)

Preliminary experiments showed that, as in the Voting game,

SSS is better than WSS and therefore we focus our analysis on

the former. When applying SSS, Eq. (24) can be re-interpreted. Let

μi,s = 

(
n −1 
s −1 

)−1 ∑ 

S∈ U is v (S) be the arithmetic mean of v (S) , for all S

such that i ∈ S , | S| = s . Then: 

˜ a m 

i,s ( v ) = 

1 

(n − s ) 

[ 

1 

τis 

∑ 

S∈ S i,s 
υ(S) 

] 

︸ ︷︷ ︸ 
˜ μi,s 

(34)

in which ˜ μi,s is the usual estimator of μi , s . To calculate variances

and standard errors of Eqs. (26) and (27) , we can readily see that:

Var [ ̃  a m 

i,s ( v ) ] = 

1 

(n − s ) 2 

(
τ−1 

is 

∑ 

S∈ S i,s υ(S) 2 − ˜ μ2 
i,s 

)
τis 

. (35)

5.4.1. An algorithmic framework for the application of the stratified 

sampling strategy in linear production games 

This subsection describes an efficient implementation to com-

pute the Shapley value using this sampling strategy. The pseu-

docode of this method is reported in Algorithm 2 . We describe in

the following the details of that implementation. 

Eqs. (34) and (35) are used in the SSS code, described in

Algorithm 2 . In line 1–5 some data structures are initialized. Next,

in lines 6–11 we take advantage that the size of some strata U s 

is so small that complete enumeration is better than sampling (it

happens so when the stratum sample size τ / n is bigger than the

cardinality of U s ). Evaluations of v (S) by complete enumeration de-

crease the sample size τ in Line 12. Then, in lines 13, the remain-

ing τ is allocated evenly between the rest of the strata. The sam-

pling process is described in lines 14–20. It can be seen that, as in

the Voting Game, every time that one value v (S) is calculated, it

is used to update data structures for all i ∈ S . In lines 21–28, values

˜ a is are calculated (note that we do not need to calculate their vari-

ability when they are calculated by complete enumeration: com-

pare lines 21–25 with lines 26–28). Lines 29–35 compute the out-

puts ˜ φ and ˜ σi . With respect to the Voting game application, it is

worth to note that Algorithm 2 does not include the optimal sam-

ple allocation. As a matter of fact, we implemented that too, but

improvements were negligible. 

5.4.2. Computational experiments on linear production games 

In the following we report our results on two cases considered

for the linear production games. First of all, we consider a small
roblem with n = 24 players, m = 12 products, q = 5 production

onstraints ( n = 24 as been chosen as the maximum game size al-

owing the exact computation of the Shapley value). All data for

 , B , p are random (0–1)-uniform values. In the first experiment,

e compare the exact Shapley value with the SSS estimates. In

able 5 results are reported for τ = 10 6 , f = τ/ 2 24 � 0 . 06 . As it

an be seen, estimates are quite precise: The standard error is one

rder of magnitude smaller than the Shapley value and interval

stimates contain the exact value. In the second experiment, we

ompare SSS with the algorithm Two-Stage-St-ApproShapley-opt de-

cribed in Castro et al. (2017) . In that method, for each sample unit

 , player i ’s marginal gain must be calculated. Therefore two Linear

rograms, one for v (S ∪ { i } ) and one for v (S) , must be solved, and

he computational time needed by Two-Stage-St-ApproShapley-opt

re twice the ones needed by Algorithm 2 . To a fair comparison,

oth methods are run with input τ corresponding to the number

f times problem (33) is solved. In Fig. 2 we report the mean of the

bsolute errors and the mean of the standard error (the error vari-

bility), controlling for various sample ratios τ /2 24 . It can be seen

hat Algorithm 2 is much better than Two-Stage-St-ApproShapley-

pt , as the absolute errors of the latter are between 4 and 10

imes larger than the former, and the standard errors are between

 and 5 times larger too. It can also be seen that as the ratio in-

reases, both average and standard errors, seem to stabilize to a

hreshold. 

The last experiment considers a game of n = 80 players. For this

odel size, the exact Shapley calculation is impossible. We run the
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Fig. 2. Dashed line: Two-Stage-St-ApproShapley-opt , Continuous line: Least Squares approximation. 

Table 5 

Exact and approximate value of the Shapley value to the small 

linear production game with SSS and f � 0.06. 

Player φ i 
˜ φi SE[ ̃  φi ] 95% Interval 

1 1.0222 1.0070 0.0203 (0.9672, 1.0468) 

2 0.5451 0.5429 0.0199 (0.5038, 0.5819) 

3 0.5628 0.5593 0.0199 (0.5202, 0.5984) 

4 0.8457 0.8384 0.0205 (0.7982, 0.8787) 

5 1.0498 1.0431 0.0200 (1.0039, 1.0822) 

6 0.7305 0.7187 0.0206 (0.6783, 0.7591) 

7 0.5989 0.6151 0.0201 (0.5757, 0.6546) 

8 0.8059 0.8101 0.0209 (0.7691, 0.8511) 

9 0.8677 0.8923 0.0201 (0.8530, 0.9316) 

10 1.1092 1.1196 0.0198 (1.0807, 1.1585) 

11 0.5872 0.5902 0.0204 (0.5502, 0.6302) 

12 0.5814 0.5925 0.0204 (0.5525, 0.6326) 

13 0.8667 0.8635 0.0203 (0.8238, 0.9032) 

14 0.6517 0.6391 0.0205 (0.5988, 0.6793) 

15 0.3278 0.3032 0.0190 (0.2660, 0.3404) 

16 0.2282 0.2497 0.0191 (0.2122, 0.2872) 

17 0.6604 0.6392 0.0204 (0.5991, 0.6793) 

18 0.9809 0.9706 0.0202 (0.9309, 1.0103) 

19 0.3171 0.3072 0.0192 (0.2696, 0.3448) 

20 1.2059 1.2015 0.0193 (1.1637, 1.2394) 

21 1.0978 1.1097 0.0195 (1.0715, 1.1479) 

22 0.9155 0.9144 0.0203 (0.8746, 0.9541) 

23 0.6461 0.6742 0.0202 (0.6346, 0.7139) 

24 0.8571 0.8597 0.0208 (0.8189, 0.9005) 

a  

2  

m  

o  

i  

t  

p  

p  

t  

a  

Fig. 3. Results of the Production Game with n = 80 : Bold line: Average difference 

d of consecutive Shapley values, Continuous line: Average standard error of the 

Least Squares approximation, Dashed line: Average standard error of Two-Stage-St- 

ApproShapley-opt . 

s  

m  

t  

A

 

d  

t  

e  
lgorithms for various values of τ , ranging from τ = 10 5 to τ =
0 × 10 5 , corresponding to very small sampling ratios: the maxi-

um being of order 10 −18 . Computation time ranged from 10 sec-

nds to 4 minutes, but consider that algorithms are implemented

n R, that is an interpreted programming language much slower

han C and Fortran. Since the exact Shapley values are not com-

utable, Algorithm 2 and Two-Stage-St-ApproShapley-opt are com-

ared by the average of standard errors. In Fig. 3 , it can be seen

hat the former algorithm is uniformly better than the latter. Note

lso that after some relatively small value of f , the means of the
tandard errors remain rather stable, so that no further improve-

ent in the precision of the estimators is obtained by increasing

he sampling fraction, thus good estimators are provided by the

lgorithm 2 even for relatively small sample sizes. 

To control for the approximation precision, measured by stan-

ard errors, we check whether we can rank players according to

heir power with sufficient precision. So we calculated the av-

rage of the difference between two consecutive Shapley values.
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Fig. 4. Dashed line: Two-Stage-St-ApproShapley-opt , Continuous line: Least Squares approximation. 
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That is, we sort values ˜ φi in decreasing order to obtain 

˜ φi : n as the

value in position i in the ordered list of size n . Next we calculate

d i = 

˜ φi : n − ˜ φi +1: n for i = 1 , . . . , n − 1 and finally the average of d i ’s,

i = 1 , . . . , n − 1 . Now, the intuition is that when the standard errors

are smaller than the average difference, then interval estimates are

more and more precise to the point that confidence intervals of the

Shapley estimates do not overlap. In Fig. 3 , it is apparent that, for a

sufficiently large value of the sampling fraction, the standard errors

are less than half the average of d i ’s, meaning that the correspond-

ing confidence intervals of the Shapley values do not overlap, then

a perfect ranking of the strength of the players is possible in this

example. 

5.5. The assignment and the quadratic superadditive game 

Algorithm 2 can be modified to deal with other games. As can

be seen, the calculation of v (S) and the data structure involved are

independent on the game definition and one can readily substitute

the production characteristic function with any other game char-

acteristic function. We will see the results of two more peculiar

applications: the Assignment Game and the Quadratic Game. 

Assignment Games were introduced by Owen and Shapley and

Shubik (1971) . Each player i ∈ N is a buyer/seller of an object. As a

seller, player i values its object at c i euros, while as a buyer, it val-

ues all other objects at h ij euros. A transaction between two play-

ers i and j occurs on the condition that h i j − c j > 0 . For any coali-

tion S , it is supposed that they maximize the profit sum. Therefore,

the characteristic function v (S) is the solution to the assignment

problem on the bipartite graph G = (N 1 , N 2 , E) , in which nodes are

N 1 = N 2 = S and the profit of arc ij , i ∈ N 1 , j ∈ N 2 is max { 0 , h i j − c i } . 
We run some experiments to control whether our previous re-

sults are confirmed with some simulated data. For sellers, the

value of each object c i is a random number, drawn with uniform

probability from the integer range [20; 40]. Buyers overestimate

or underestimate all the other objects values with integers within

the range [ −5 ;+5] . Numerical results were similar to the ones ob-
ained in the production game and we report only the experiment

n the small problem. Here, we had n = 24 , we calculated Shap-

ey values by complete enumeration, we run Algorithm 2 changing

he calculation of v (S) , and compare it with algorithm Two-Stage-

t-ApproShapley-opt . In Fig. 4 we report the mean of the absolute

rrors and the mean of the standard error (the error variability),

ontrolling for various sample ratios τ /2 24 . It can be seen that Al-

orithm (2) is much better than Two-Stage-St-ApproShapley-opt , as

he absolute errors of the latter are between 2 and 3 times larger

han the former, and the standard errors are 5 times larger too. 

In the next, we are interested to quadratic games as instances

f superadditive games on which it is imposed the minimum

mount of structure. The characteristic function of quadratic games

s defined as follows. Let a i , i = 1 , . . . , n be positive numbers, then

 (S) = 

(∑ 

i ∈ S a i 
)2 

, and v (∅ ) = 0 . To see that those games are super-

dditive, one can write the characteristic function as: 

 (S) = 

∑ 

i ∈ S 
a 2 i + 

∑ 

i, j∈ S 
i< j 

2 a i a j 

Then, one can readily see that, for all S , T such that S ∩ T = ∅ : 
 (S) + v (T ) = 

∑ 

i ∈ S 
a 2 i + 

∑ 

i, j∈ S 
i< j 

2 a i a j + 

∑ 

i ∈ T 
a 2 i + 

∑ 

i, j∈ T 
i< j 

2 a i a j 

≤
∑ 

i ∈ S 
a 2 i + 

∑ 

i ∈ T 
a 2 i + 

∑ 

i, j∈ S 
i< j 

2 a i a j + 

∑ 

i, j∈ T 
i< j 

2 a i a j + 

∑ 

i ∈ S 
j∈ T 

2 a i a j 

= v (S ∪ T ) . 

As for the Matching game, we keep n = 24 , and we draw val-

es a i from the uniform distribution ranging from 1 to 2. We

alculate the exact Shapley value by complete enumeration and

hen we compare the accuracy of Algorithm 2 and Two-Stage-St-

ApproShapley-opt . In Fig. 5 we report the mean of the absolute er-

ors and the mean of the standard error, controlling for various

ample ratios τ /2 24 . Again, it can be seen that Algorithm 2 is bet-

er than Two-Stage-St-ApproShapley-opt , as the absolute errors is
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Fig. 5. Dashed line: Two-Stage-St-ApproShapley-opt , Continuous line: Least Squares approximation. 
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lways larger than the former, and the standard errors are much

arger too. 

. Conclusions 

We propose a methodology to calculate values of cooperative

ames that relies on the concept of stochastic approximation. 

The idea is to replace the exponential number of terms of the

alue formula summation with just a sample of them. Applying

robability concepts to the sample and to the reduced sum, we

an prove that the expectation of the estimate is the actual value

f the game and that its standard error keeps under control the

ifference between the estimate and the actual value. We proved

he viability of our approach calculating values of different games

ith different sampling strategies, and we found that the sample

atio does not need to be large to obtain good approximations.

n all our experiments, good approximations were obtained with

atios never greater than 0.1. Moreover, it is worth to note that

tandard errors depend on the sample size and not on the popula-

ion size, (see Formula (13) for example), so it is expected that as

he number of players grows larger, values can be approximated

ith even smaller ratios, too. Successful applications depend on

he sampling strategy and the game characteristic function. There-

ore, future research should consider different sampling strategies,

uch as different stratifications, and different classes of games, as

or instance network games following the line in van Campen et al.

2018) . Moreover, while the theoretical properties of many coop-

rative games are often well-understood, we are somewhat miss-

ng their economic applications. To date, one reason to this could

ave been the time complexity to calculate values, which has pre-

ented the analysis of games whose number of players is more

han minimal. We hope that the stochastic approximation will be

he technique to foster new empirical analysis. An important ap-

lication of Shapley and other values is to voting games, as tes-

ified in Badinger, Muhlbock, Nindl, and Reuter (2014) , Barr and

assarelli (2009) , and Pajala and Widgrèn (2004) . There, values are

sed as player’s power measure. Here we found that even though
or large number of players exact values can not be obtained, esti-

ated Shapley values are precise enough to rank players’ power. 
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